Weighted Dirac combs with pure point diffraction
نویسندگان
چکیده
A class of translation bounded complex measures, which have the form of weighted Dirac combs, on locally compact Abelian groups is investigated. Given such a Dirac comb, we are interested in its diffraction spectrum which emerges as the Fourier transform of the autocorrelation measure. We present a sufficient set of conditions to ensure that the diffraction measure is a pure point measure. Simultaneously, we establish a natural link to the theory of the cut and project formalism and to the theory of almost periodic measures. Our conditions are general enough to cover the known theory of model sets, but also to include examples such as the visible lattice points.
منابع مشابه
Dense Dirac combs in Euclidean space with pure point diffraction
Regular model sets, describing the point positions of ideal quasicrystallographic tilings, are mathematical models of quasicrystals. An important result in mathematical diffraction theory of regular model sets, which are defined on locally compact Abelian groups, is the pure pointedness of the diffraction spectrum. We derive an extension of this result, valid for dense point sets in Euclidean s...
متن کاملPure Point Diffraction and Cut and Project Schemes for Measures: the Smooth Case
We present cut and project formalism based on measures and continuous weight functions of sufficiently fast decay. The emerging measures are strongly almost periodic. The corresponding dynamical systems are compact groups and homomorphic images of the underlying torus. In particular, they are strictly ergodic with pure point spectrum and continuous eigenfunctions. Their diffraction can be calcu...
متن کاملDiffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number
— The Fourier transform of a weighted Dirac comb of beta-integers is characterized within the framework of the theory of Distributions, in particular its pure point part which corresponds to the Bragg part of the diffraction spectrum. The corresponding intensity function on this Bragg part is computed. We deduce the diffraction spectrum of weighted Delone sets on beta-lattices in the split case...
متن کاملDiffraction of Stochastic Point Sets: Explicitly Computable Examples
Stochastic point processes relevant to the theory of long-range aperiodic order are considered that display diffraction spectra of mixed type, with special emphasis on explicitly computable cases together with a unified approach of reasonable generality. The latter is based on the classical theory of point processes and the Palm distribution. Several pairs of autocorrelation and diffraction mea...
متن کاملDiffraction of Stochastic
Stochastic point processes relevant to the theory of long-range aperiodic order are considered that display diffraction spectra of mixed type, with special emphasis on explicitly computable cases together with a unified approach of reasonable generality. The latter is based on the classical theory of point processes and the Palm distribution. Several pairs of autocorrelation and diffraction mea...
متن کامل